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Abstract. Anomalous (non-classical) temperature behaviour of birefringence at the second- 
order normal-incommensurate phase transition in Rb2ZnBr4 crystals is studied experi- 
mentally. An attempt is undertaken to discuss it using the existing theoretical approach. A 
critical review of some theoretical results concerning the temperature dependence of the 
local mean square of an order parameter is given both for the region of small corrections to 
the results of the Landau theory and for the scaling region. It is shown that, in the region of 
‘small corrections’ (at I T (  = lo-’), qualitative agreement of the experiment with the results 
of fluctuation theory can be recognised. Near the critical point, at / T I  < the deviation 
from the critical behaviour of the XY model is found; the nature of this deviation is not clear. 

1. Introduction 

Deviations from classical (mean-field) behaviour near structural phase transitions, in 
particular, near transitions from normal (N) to incommensurate (I) phase have been 
repeatedly observed in experiments (see, e.g., Flerov and Iskornev 1980, Hamano etal  
1980, Havliceket al1986, Iskornev and Flerov 1983, Mashiyama 1981, Sawada etal 1981, 
Unruh etal 1979). The interpretation of such deviations consists usually in comparing the 
observed critical indices with the theoretical values for the XYmodel, but it is not evident 
ab initio that one deals with the scaling region, i.e. that a true asymptotic critical 
behaviour is observed. To clarify the possible nature of these deviations we have 
performed a careful experimental study and analysis of the temperature dependence of 
birefringence for Rb2ZnBr4 crystals in both the N and the I phases (for preliminary 
information see Ivanov er a1 (1989)). Some results for Rb2ZnC14 are discussed too. 

Investigation of the temperature dependence of birefringence is a conventional 
method of studying the critical phenomena. The method is both convenient and precise; 
therefore many experimental results obtained by this method have been reported (Bruce 
and Cowley 1981, Fousek and Petzelt 1979, Gehring 1977, Melnikova and Anistratov 
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1983, Schafer and Kleemann 1985). Surprisingly, one observes many inconsistencies 
and errors in the interpretation of experimental data. Taking this into account, we begin 
with a review of the theoretical results concerning the temperature dependence of 
birefringence near phase transitions (section 2). Then in section 3 we present the 
experimental data and discuss them. 

2. Theory 

We shall deal with the birefringence non-zero in the symmetrical phase; its change at 
the phase transition depends on invariant combinations of order parameter components, 
v i ,  the lowest order invariant being X i  q' (Fousek and Petzelt 1979). 

For simplicity, we consider the case of a single-component order parameter (Ising- 
type system) but present also the results for XY-type systems including I phases. 

In the experiment, in fact, one measures the total phase shift for the plane wave in 
an inhomogeneous medium: 

where s is the cross section of the light beam and 1 is a distance along the light path. As 
by symmetry we have An(r) = Ano + av2(r), 

where K and ra re  three-dimensional vectors, V = SI, qK is the Fourier transform of q(r), 
qK = (l/V)Jq(r) exp(-iKr) d r  and K,, is a cut-off wavevector arising as usual in the 
continuous-media approximation. The problem of the temperature dependence of the 
refractive index or birefringence An reduces to that for X $ t ( ( r K q - K )  (q2)loc. Indeed, 
the anomalous temperature dependence of I - V1i3 coincides with that of (qz),oc (see 
below) and the temperature dependence of the coefficient a can be neglected. 

2.1. Scaling region 

The temperature dependence of (q2)loc has been discussed, in fact, repeatedly (see, e.g., 
Bruce and Cowley 1981, Gehring 1977, Ma 1976, Meissner and Binder 1975). One has 
for the immediate vicinity of the critical point T, (the scaling region) 

at{ T' T~ 
T <  T, 

CO - C+Z1-a + C'Z + . . . 
CO + c-IzI1-a + C'Z + . . . 

where a is the specific heat critical index, and CO, C+, C- and C' are non-universal 
constants depending in particular on Kat; z = ( T  - T,)/Tc. 

It is instructive to obtain equations (3) in the following way. (We shall use a specific 
choice of the effective Landau Hamiltonian. The results to be obtained are valid in the 
general case as far as the universality assumption is correct .) Let us consider the effective 
Hamiltonian 

X =  I V e ( T -  T,)q2 + - ( V V ) ~  D 
2 (4) 

where A T  = A T T ,  D = DT,  B = BT and A,, B ,  D are temperature-independent quan- 
tities; Vis the volume of the system. 
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Then the free energy F and the entropy S are given by 

The singular part of S (as well as that of V ,  I) is known to be proportional to IzI1-a. At 
the same time the leading singularity of the first term in equation (6) is / z / ~ - ~ .  Thus the 
leading singularity of (q2)loc is just the same as that in S (i.e. I ~ l l - ~ ) .  Note that equation 
(6) and consequently the latter conclusion is valid at both T > T, and T < T,. In the case 
T < T,, (q)* is non-zero at V+ cc (in contrast with the case T > T,) and is proportional 
to 1zI2@. However, the sum X f Z o  ( q K q - K )  is given by equation (3b) ,  i.e. has a much 
weaker singularity than 1zI2P does. 

One might think that equations (3) are in disagreement with the direct calculation 
of the sum E$z0 ( q K 7 - K )  (see, e.g., Shafer and Kleemann 1985). Indeed, we have 
(Landau and Lifshitz 1958) 

where x ( K )  is the susceptibility corresponding to qK presented in the scaling form 
x(O)f(Kr,), rc is the correlation radius and ~ ( 0 )  - t - Y ,  r, - z-”. Let us takef(x) in the 
form that provides correct asymptotic behaviour at x+ and x+ 0, e.g. f(x) = 
1/(1 + x 2 - f i )  orf(x) = 1/(1 + x2)(2-fi)/2. Then we obtain from equation (7) 

It is just this result that many researchers use (for references see Meissner and Binder 
(1975)). We see that it is in contradiction to equations (3) that were obtained with the 
use of the universality assumption only. In other words, equation (8) must be wrong. 
One can find a criticism of equation (8) in the work of Bruce and Cowley (1981) and 
Meissner and Binder (1975). We shall present here a more simple but not less strict 
argument. 

The point is that one cannot choose the form of f(x) taking into account asymptotic 
behaviour only. We shall show that non-asymptotic singular terms inf(x) are of import- 
ance (Fisher and Langer 1968). It turns out also that the validity of equations (3) means 
that there exists some ‘sum rule’ forf(x). Without pretending to derive the exact ‘sum 
rule’ let us illustrate its origin. 

In accordance with the scaling theory,f(x) -1 at x + 0 andf(x) + gY2+ f l  at x + 
(g is a constant). From equation (7) we have 

(q2)10c - z2@ JoKatr‘ f ( x ) x 2  dx  = z2@ 

and 

(q2),oc - constant + t 2 P  (9b) 

The factor z2@ in the last term in equation (96) is temperature dependent. To reveal the 
temperature dependence one has to take into account the non-asymptotic terms inf(x). 
From the paper of Fisher and Langer (1968) it follows that 

One finds now that the leading singularity in the third term of equation (9b) is lz l l -a.  

(q2) ,oc - (constant - 1 ~ 1 ~ 8 ) .  (8) 

Kat‘c K d c  
gxqdx + t2@ lo [ f ( x ) x 2  - gxq] dx  (9a) I, 

[ f ( x ) x 2  - gxq]  dx - z2@ J f f i  [ f ( x ) x 2  - gxq]  dx. 6, Katrc 

[ f ( X ) X 2  - gx”l,+ffi + Clx-(’-”)/”+9 - c2x-l/”+9* (10) 
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Therefore equation (7) gives the same result as correct equations (3 ) ,  provided that the 
second term in equation (9b) disappears. This is possible under the condition ('sum 
rule') lo' [ f ( x ) x 2  - gxs] dx  = 0. (11) 

(Note that for illustration we have omitted non-asymptotic terms in r, and ~ ( 0 )  in 
equation (8); therefore the condition forf(x) should be more complicated than equation 
(11). Moreover, taking into account these terms, one obtains a condition additional to 
equation (IO).) 

By similar arguments one can obtain the same equations (3)  for the X Y  system. In 
this case (Y < 0; therefore the singular part of (q2)loc includes Itll+lnl and higher-order 
powers of 1x1. Let us emphasise that in this case both (q2)loc and d( q2)10c/d Tare continuous 
at t = 0. 

Note that unlike the mean-field situation the temperature dependence of An in the 
scaling region provides no direct information on the temperature dependence of the 
order parameter (if An * 0 in the symmetrical phase). That is why the results of some 
papers on determination of the non-classical index p from the An( T) dependence are 
incorrect. 

2.2. Corrections to the Landau theory 
For structural phase transitions the anomalies are often proved to be described by the 
Landau theory and by small corrections to it. We shall discuss the 'first fluctuation 
corrections' to An(T)  in both phases. When interpreting experimental data it is natural 
to represent A n ( T )  as a sum of the 'Landau (mean-field) part' and the fluctuation 
contribution. We calculate (q2)loc taking into account the first fluctuation correction. 
Using the effective Hamiltonian (equation (4)) for the symmetrical phase we obtain the 
well known result 

(12) 
wherer; = m, A = A T ( T  - T o ) ,  z = ( T  - To)/To. Thelast approximationisvalid 
close enough to the transition, where Katrc* 1. 

For the non-symmetrical phase, account must be taken also of the first correction 
(AqK=O) ( q K = O  - qo)  to the mean order parameter qo calculated in the framework of 
the Landau theory ( q o  = ( lA/ /B) ' l2);  here we can write 

Kat 

( q 2 ) i O c  = q2O + 2 ( ~ ~ K = o ) q o  + X ( A v K A V - K )  (13) 
K f O  

where 

As a result we have 

where r; = (D/2/AI) ' / '  
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The first term in the right-hand part of equation (14) equals zero at the renormalised 
transition temperature (Vaks er a1 1966, Strukov and Levanyuk 1983) T,* = To - 
(3BTO/2A T ~ 2 D ) K a t ,  which should be identified with the experimentally observed 
transition temperature T,, if one deals with the first correction to the Landau theory. 
Within the ‘improved’ perturbation theory (Vaks et a1 1966) one has to substitute T,* for 
To also in the last term in equations (12) and (14). Note that (q2)loc approximated by 
equations (12) and (14) is continuous at z = 0 (although these approximations them- 
selves are valid at z # 0). We see that the temperature dependence of (q2)lo, and 
consequently of the anomalous part of An coincides with that of the anomalous part of 
entropy. 

When interpreting the experiment it is more convenient to analyse not An but its 
temperature derivative = d (An)/d T. Using equations (12) and (14) one obtains 

c’ = c B +  + Afz-’12 a t t > O  (15a) 
= c B  + c L  f A-lzl-”2 a t t < O  (15b) 

where cL = (AT/B)a ,  cB is the ‘background’ (i.e. the normal or regular part of the 
‘thermo-optic coefficient’), A-/A+ = 2 V 5 ,  and z = 0 corresponds to experimentally 
observed critical point T,. In the case of XY systems (N-I phase transitions), A - / A C  = 

Let us emphasise that there are, strictly speaking, many reasons for equations (15) 
to be invalid or useless far enough from the critical point. The first reason is evident from 
equation (14). The next reason follows from the temperature dependences of AT,  B,  D ,  
which were neglected, as well as the higher-order terms, in the Landau thermodynamic 
potential. When interpreting experimental data, one should take into account also the 
temperature dependences of cB and cL. The temperature dependence of cB is quite 
similar to that of the thermal expansion or heat capacity. For the temperature region 
around TD (TD is the Debye temperature), one can estimate cB(T) as cB( TD)  [ I  + m( T - TD)/TD] where m = lo-’ for the Debye model. If T, = TD (it is so 
in our case) and the phase transition is far from the tricritical point the temperature 
dependence of cL can be estimated as cL(Tc) [l + ( T  - T,)/T,] for both order-disorder 
and displacive phase transitions. Taking into account that usually cL 4 cB (CL = 1O-’cB) 
and the uncertainty of the above estimations one can assume that the temperature- 
dependent parts of both cB and cL can be estimated as cL 1 T - T,I/T,. Using equations 
(15) one can see that the temperature dependences of cB and tL can be neglected (one 
should demand it to be much smaller than the fluctuation contribution), when It1 4 G1I3, 
where G = TcB2/8n2ATD3. (It is evident from the argument presented above that the 
upper limit of applicability of equations (15) can be estimated by an order of magnitude 
only.) On the other hand, G < It1 is, in fact, the condition of applicability of both the 
Landau theory and the first fluctuation correction to it. Let us mention that, as for the 
applicability range of the Landau theory, the given expression for G is valid for an order 
of magnitude too. As a result the region of applicability of equations (15) is given by the 
condition 

v5. 

G < It( % G’13. (16) 
Therefore a well defined temperature interval of validity of equations (15) can exist if G 
is very small. 

2.3. The role of defects 

The deviations from classical behaviour may also be due to defects. Let us briefly discuss 
the influence of point defects on the temperature dependence of (q2),oc in the critical 
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region at the N-I phase transition. As is known from the work of Harris (1974) the 
presence of ‘random local temperature’ (or ‘symmetry-conserving’) defects does not 
change the critical behaviour of systems with a < 0. One could expect that ‘random 
local field’ (or ‘symmetry-breaking’) defects influence the phase transition significantly. 
According to Larkin (1970) and Imry and Ma (1975) these defects break down the long- 
range order in I phase; therefore one could expect smooth anomalies at Ti. 

For the non-critical region where defects provide only small deviations from the 
results given by the Landau theory (Levanyuk eta1 1979, Levanyuk and Sigov 1990) one 
obtains for the system with ‘random local field’ defects 

( q 2 ) l o c  = Ad+z-’/2 a t z > O  (17a) 

( r2 ) loc  = TcArltl/B - AdlZI-1/2 a t z < O  (17b) 
where Adf and A, are constants proportional to the concentration of the defects, and 
Ad/Ad+ = V?. Equations (17) are valid if IzI * ( TcAT/BAd)2. Having this in mind we can 
conclude from equations (17) that there is no indication of a maximum of the ‘defect 
contribution’ to (r2),,, at T = T,. This is contrary to the statement by Levanyuk et a1 
(1983). 

The contribution of more symmetrical ‘random local field’ defects (P defects in the 
notation of Levanyuk er a1 (1979)) is given by equations (15), where A+ and A- depend 
on the concentration of the defects and A-/A+ # 2 ~ .  At present there are no cor- 
responding theoretical results for I phases. For the N phase the correction to (q2),oc which 
is linearly dependent on concentration of such defects, takes the form of equation (17a). 

3. Experiment and discussion 

Rb2ZnBr4 crystals have an N-I phase transition at Ti = 347 K. The spontaneous distor- 
tions correspond to the wavevector (g - 6)a* (Iizumi and Gesi 1983). In Rb2ZnBr4, 
contrary to other crystals of the K2Se04 family, the value of 6 = 6, = 0.04 does not 
depend on temperature in the wide region from Ti down to about 210 K, which cor- 
responds to nearly commensurate modulation, 4 - dI = &. Near the lock-in transition 
temperature TL the picture of structural distortions becomes more complicated, and 
the situation can be described as, in addition to &-modulation, two incommensurate 
modulations with &(T) and dIII(T) (Iizumi and Gesi 1983). The transition to the 
commensurate (c) ferroelectric phase Pna2,, which is weakly polar along the c axis, 
takes place at TL = 193 K; two additional phase transitions (out of scope of this discus- 
sion) were observed at lower temperatures (Nomoto et a1 1983). It should be noted that 
the existence region of the I phase is very extended. 

Here we shall concentrate our attention on the discussion of birefringence anomaly 
An near Ti. Irregular and hysteresis behaviour of An(T) near TL is of separate interest; 
here we mention it very briefly having in mind that the microscopic and macroscopic 
structure of these (defect) crystals in the I phase near TL has not yet been made clear. 

Temperature dependences of An were recorded at constant speeds of temperature 
scans (1 K min-’ far from and0.2 K min-’near to TL and Ti) using an automaticBabinet- 
Solei1 compensator (with optical retardation resolution of about 0.002A at A = 633 nm). 
The temperature coefficient = d (An)/d Tof birefringence (‘thermo-optic coefficient’) 
was calculated as the graphic derivative. The Rb2ZnBr4 crystals were grown from the 
melt; solution-grown Rb2ZnC14 crystals were investigated too. Samples in the form of 
parallelepipeds 2 mm x 2.5 mm x 3 mm were selected to have good optical homo- 
geneity and the sharpest anomalies at the transitions. The samples were mounted on a 
copper stage in a temperature-controlled chamber filled with helium or nitrogen. 



T,-dependence of birefringence in Rb2ZnBr4 5783 

-100 0 1  - -  - / 100 /[ I' - 

-0.51 
Figure 1. Temperature dependences of the temperature coefficient of birefringence for 
Rb,ZnBr, for three different crystallographic directions: (a) a axis; ( b )  b axis; (c) c axis. The 
results for Rb,ZnCl, are given in (a )  by the dotted curves. The broken lines correspond to 
the background fe and to the sum f B  + cL, where f L  = constant, satisfying equations (15) at 
It1 > 4 x lo-,. The behaviour near TI is given in the insets. 

In figure 1 the temperature dependences of 5' for three principal cuts are presented 
(the index indicates the coincidence of the crystallographic axis for the Pnam space 
group of the N phase with light propagation direction). Here one can see the anomalies 
at both Ti and TL and one or two, depending on the sample, additional anomalies above 
TL. The latter are observable only on cooling. In the same temperature region, splitting 
of superstructural satellite reflections were observed by Iizumi and Gesi (1983) on 
both heating and cooling. Hysteresis of <( T )  and An( T) between TL and TL + 40 K is 
observable too. The sharp peaks of 5' at TLcorrespond to jumps of An = lo-' at the first- 
order phase transition; the temperature hysteresis of this transition is 4 K. The transition 
at 114 Kis continuous. It should be noted that additional anomalies (on cooling) for the 
same crystal were not observed in thermal expansion (Havlicek et aZ1986, Ivanov and 
Fousek 1990); however, in the dielectric constant at least one anomaly was definitely 
recorded as a small ( A &  = l), faintly smoothed ( A T  = 1 K) jump of E upwards. 

Let us discuss now in detail the anomalies of An near the second-order phase N-I 
transition, trying to answer the question of whether it is possible to describe them in the 
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Figure 2. Temperature depeFdences of the nor- 
malised critical differences Afc (see equation (19) 
and text below it) of the temperature coefficients 
of birefringence for the a axis in the region of small 
It/ for RbJnBr, (broken curve) and Rb2ZnCl4 
(full curve). The temperature behaviour of the 
change in the birefringence for the a axis for 
Rb,ZnCl, (full curve) in the vicinity of T, = 
304 K, recorded under high-resolution conditions 
(birefringence, t 1 . S  x lo-'; temperature t = 
tS x the t-scale coincides with that for Af 
E. The dotted curves qualitatively show the 

expected although unobserved 'true critical 
behaviour' at It1 < 

framework of the theory reviewed above. The An( T )  curves are continuous at Ti and 
strongly non-linear below and above T,. The e( T )  curves have the shape of a broad peak 
which is relatively large in comparison with the total change in e;  however, in an interval 
near Ti of the order of magnitude of the temperature resolution of the experiment, 
( T  - Ti)/Ti = t = they look discontinuous; because of this an interval with unre- 
liable values of is excluded, and Ti is inside this interval in the middle (see figure 1). 
Note that qualitatively the same shapes of anomalies (deviations from the results of the 
Landau theory) are observable in thermal expansion, heat capacity, etc. 

Let us suppose that these deviations are due to fluctuations. Then one can expect 
that far from the transition point the deviations, being small in this region, can be 
described using equation (15). Surely, what one calls 'deviations' depends on the choice 
of background, which is one of the most obscure problems in an experimental study of 
the phase transitions. In figure 1 the backgroznd cB and cB + cL are shown which satisfy 
equation (15) and the condition A-/A' = d2 in the regions of 'small, but not too small' 
deviations in both phases; here CL was assumed to be constant, and cB to be temperature 
dependent. Obviously the procedure for choosing cB(T) is ill defined. Indeed, let us 
take, for a start, some constant cB, using equation (15~) .  Then, taking cL approximately 
as the difference between the e-values in the I and N phases somewhere in the regions of 
small deviations, we can estimate G as the value of t for which a deviation, or Alzl-l/'- 
term, equals cL. Immediately one can see that this G is not small enough (lo-' in order 
of magnitude; see inequality (15)); therefore it is not surprising that in the I phase the 
behaviour of the deviation from any constant level cB + CL does not follow equation 
(1%) (Ivanov et a1 1989). The situation improves if we take cB(T) in the form of a t 
expansion (G almost does not change and is about 2 X lo-'). However, in this case some 
additional terms should be added to equation (15). Therefore the total situation for the 
analysis with the use of equation (15) in the region of small deviations for the case of 
not very small G cannot be defined strictly. Nevertheless we would like to emphasise 
that qualitatively the experimental data do not contradict the fluctuation theory. 

Let us now discuss the region of small z (z < G) where the theory of small corrections 
to the Landau theory is invalid. From equations (3), for negative and small a, 5 should 
have a very sharp but finite peak at T = Ti, and at 1x1 + 0 

e' = cB f cpeak - A F l ? l ' " ' .  (18) 
In the experiment, nearest to Ti (see insets in figure 1 or An(t)  curve in figure 2 ) ,  we do 
not observe such behaviour down to t = There are, strictly speaking, possibilities 
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that either the presence of infinitely sharp peak will become evident at smaller z or the 
peak is cut off by the defects. Still we may hope that we can observe the wings of the 
peak. From equation (18) gpeak and the main background contribution are eliminated if 
we consider the critical difference 

Figure 2 shows the dependence of the difference Atc on / T I  for an a-cut of the crystal 
section, for example. Here Atc  = AgC/AgN where AgN is the value of Al;, at some 
temperature of normalisation tN < G (we take zN = 5 x note that AtN = CL and 
the deviation from the 'square root law' starts at t < 4 x taken on a falling (at 
/-cl+ 0) part of the curve. The decrease in Atc is observed down to /zI = and can be 
described here by equation (19) with (U = -0.03 for Rb2ZnC14 and -0.05 for Rb2ZnBr4 
( h a  = 20.02). These values are fairly close to that obtained in numerical calculations 
((U = -0.02 2 0.03) cited by Ma (1976). However, at /zI < deviations from this 
probably critical behaviour of a 'pure' crystal are observed (figure 2) which can be 
ascribed to the role of some defects (not of the 'random local field' type). To draw more 
definite conclusions one should consider the curves g'( z) separately; unfortunately 
there are no theoretical results on the critical amplitudes as well as no experimental 
evidence on the value of the critical peak. 

There is also the possibility that the deviations from the Landau behaviour over the 
total wide temperature interval (lzl = lo-') are caused by defects. Unfortunately even 
within the theory of small deviations from the results of the Landau theory the ratio 
Ai /Ai of the 'critical' amplitudes is not known for the XY systems. However, at Ti the 
experimentally observed sharp jump of 5' seems to be'inconsistent with the expectation 
of the smooth anomaly coming from the conclusion (Larkin 1970, Imry and Ma 1975) 
that 'random local field' defects should suppress long-range order in the I phase. 

In addition, recently we measured the birefringence for a Rb2ZnC14 crystal that had 
been specially purified by multiple recrystallisation and was kindly supplied by Dr 
Hamano. Hamano et al(1988) had shown that the purification of the crystal significantly 
changes the dielectric behaviour in the region of the I-ferroelectric phase transition 
temperature TL, making the temperature hysteresis of this transition very small. It 
follows from our optical measurements that hysteresis of TL is less than 0.1 K; however, 
the anomaly around Ti is almost the same as in the case of the crystal grown by the usual 
technology. This is an argument in favour of the fluctuation but not defect nature of the 
anomaly discussed here. 

4. Summary 

The anomalous temperature behaviour of the temperature coefficient of birefringence 
in the vicinity of the N-I phase transition at lo-' > IzI > in both phases qualitatively 
corresponds to the theory, taking into account critical fluctuations of the order 
parameter. The nature of the deviations from the critical behaviour at IzI < is not 
clear (tentatively these deviations could be ascribed to some defects not of the 'random 
local field' type). 
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